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High-Frequency Magnetoacoustic Measurements in Indium and Lead 
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Magnetoacoustic measurements at frequencies up to 270 Mc/sec have been made on high-purity indium 
and lead single crystals. Automatic data recording was employed, the attenuation being obtained directly 
as a function of 1/H. Well-defined periodic behavior was observed for both metals, enabling accurate ex
tremal dimensions of the respective Fermi surfaces to be obtained. The results agree reasonably well with 
the predictions of the free-electron model. 

I. INTRODUCTION 

MAGNETOACOUSTIC data on indium1-2 and 
lead3 have previously been reported. In neither 

metal, however, is the reported oscillatory behavior 
sufficiently well denned to enable accurate extremal 
dimensions of the Fermi surface to be deduced. For 
this reason, further magnetoacoustic measurements 
have been made at frequencies up to 270 Mc/sec on 
high-purity samples. Automatic recording has been 
employed, the attenuation being obtained directly as a 
function of l/H. The resulting oscillatory behavior is 
very pronounced and, in general, gives very accurate 
extremal dimensions of the Fermi surface. Fair agree
ment is obtained with the values predicted from the 
free-electron model. For the case of lead, the data are 
in extremely good agreement with the results of the 
OPW interpolation scheme of Anderson.4 

II. EXPERIMENTAL 

Measurements were made at frequencies up to 270 
Mc/sec using the experimental setup shown in Fig. 1. 
1-Msec rf pulses of approximately 100-V amplitude are 
produced in a tuned line oscillator employing a 6939 
twin pentode. Screen grid modulation is used. The 
attenuation is measured by a transmission method, 
both the transmitting and receiving transducers being 
30-Mc/sec X-cut crystals excited at an odd harmonic. 

After amplification the received pulses pass to a gated 
amplifier, which is actuated by a pulse derived from the 
delay circuit of a 545 Tektronix oscilloscope. The 
amplitude of the selected pulse is then measured by 
means of a diode integrating circuit and is displayed on 
the Y axis of a Moseley type 2D-2 recorder. A Bell 
Model 120 gaussmeter measures the magnetic field. 
The resulting voltage is applied to the modified X 
amplifier of the recorder, so as to give a deflection which 
is proportional to 1/H. By sweeping the magnetic field, 
a plot of received signal amplitude as a function of 1/H 
is thus automatically obtained. Figure 2 shows a typical 
curve obtained for indium at a frequency of 210 Mc/sec 
using longitudinal waves. 

Considerable care was exercised in the preparation 
of the single crystals used in these experiments. Single-
crystal ingots of both indium and lead were produced 
by the Bridgman technique. These ingots were oriented 
by x rays and suitable acoustic specimens cut from 
them by a Servomet spark erosion apparatus. In all 
cases, it was found necessary to plane the faces of the 
specimens to be flat and parallel within 0.0001 in., so 
as to obtain good echoes through the sample. No me
chanical lapping was used, because the polycrystalline 
recrystallized layer produced by this procedure caused 
excessive scattering of the high-frequency sound waves. 
The sample length varied from 2 to 4 mm. 

All the present data were taken using longitudinal 
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FlG. 1. Schematic diagram of experimental arrangement for 
high-frequency magnetoacoustic measurements. 
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FIG. 2. Typical recorder tracing obtained for indium at 210 
Mc/sec using longitudinal waves. The propagation direction is 
£001J and the temperature is approximately 1.3°K. 
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waves, the specimen temperature being approximately 
1.3°K so as to obtain a long electron mean-free path 
unaffected by phonon scattering. For indium, some data 
were obtained at 270 Mc/sec, but it was found that 
essentially the same information could be obtained 
with greater ease at 150 Mc/sec. The discontinuity in 
the signal amplitude at 27— 240 G corresponds to the 
transition from the normal to the superconducting 
state. Measurements were made with #||[010], [110], 
[001], and (111) at angular intervals of H never in 
excess of five degrees. For lead, all data were obtained 
at 270 Mc/sec with $||[100], [110], and [111], 
respectively. 

HI. RESULTS 

Representative tracings of the data taken on indium 
are shown in Fig. 3. In all cases at least one prominent 
period with no fewer than 20 oscillations was observed, 
thus enabling very accurate extremal wave numbers 
to be obtained from the formula 

30 20 10 0 
[100] [100] 

k<*t=(e/2hc)£\/A(l/n)l. (1) 

Here X is the sound wavelength appropriate to the 
propagation vector q and A(l/H) the corresponding 
period of the oscillation. It is assumed that kext is the 
extremal value of the wave number vector for the 
Fermi surface in the direction qXH. As discussed by 
Pippard,5 this assumption may not necessarily be 
correct; the main justification in the present instance 
is that it gives results which seem to be eminently 
reasonable. Figure 4 shows the angular variation of 

2 3 
DOQ/H (oersted-1) 

FIG. 3. Representative tracings of data obtained on indium 
using longitudinal waves at 150 Mc/sec. 
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FIG. 4. Angular variation of kext for indium computed from 
Eq. (1). It should be noted that the smaller dimensions are 
extremal diameters. 

&ext computed from Eq. (1). Except for #11(111), both 
long- and short-period oscillations are observable; it 
should be noted that in Fig. 4 the values of kext for the 
long-period oscillations are extremal diameters. 

Typical data for lead are shown in Figs. 5 and 6. In 
this case the critical field is approximately 800 Oe, so 
that many of the low-field oscillations are no longer 
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5 A. B. Pippard, Proc. Roy. Soc. (London) A257, 165 (1960). 

FIG. 5. Representative data obtained for lead using longitudinal 
waves at 270 Mc/sec. The propagation direction is [100] and the 
temperature is approximately 1.3°K. 
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FIG. 6. Representative data obtained for lead using longitudinal 
waves at 270 Mc/sec. The propagation direction is [110] and the 
temperature is approximately 1.3°K. 

visible due to the onset of superconductivity. I t was 
thus necessary to use as high a frequency as possible 
for all measurements. Even at 270 Mc/sec, however, 
relatively few short-period oscillations are observed for 
most field orientations. This is presumably due to orbit 
interference effects, whose existence has previously 
been postulated by Mackintosh.3 Figure 7 showTs the 
extremal dimensions of the wave number vector for 
lead with g|i[100] and </j|[H0], using the sound wave
length X computed from the elastic constants of Alers 
and Waldorf.6 Because of the restricted number of 
oscillations, particularly for the short-period data, the 
scatter is much larger than in the case of indium. In all 
cases, the discontinuous change in signal amplitude for 
low fields corresponds to the transition from the normal 
to the superconducting state. 

30 20 10 [001] [001] '10 20 30 
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FIG. 7. Angular variation of kext for lead computed from Eq. (1). 
It should be noted that the third zone dimensions in solid circles 
are extremal diameters (see Fig. 11). 

6 D. L. Waldorf, Bull. Am. Phys. Soc. 5, 170 (1959). 

FIG. 8. Free-elec
tron F'ermi surface 
for indium; small 
pockets of electrons 
in the fourth zone 
are not shown. 

IV. DISCUSSION 

A. Indium 

The free-electron Fermi surface for indium is shown 
in Fig. 8. The first zone is full, while the second is a 
dimpled fourteen-sided polyhedron similar to that in 
aluminum. Owing to the tetragonal structure of indium, 
which has c/a= 1.08, the square faces perpendicular to 
[001] are larger than those parallel to [001]. A similar 
distortion exists in the arms a, /? of the third zone. 
Relevant cross sections of the second and third zone 
surfaces are shown in Fig. 9; the lettered dimensions 
will subsequently be compared to the experimental 
values. As discussed in a previous paper, the second 
zone on the free-electron model is multiply connected 
at the points A, B, C, D, E, F, etc. This feature does 
not appear to be supported by magnetoresistance data.7 

Small pockets of electrons are predicted in the fourth 
zone but these presumably disappear in a finite crystal 
potential. 

The larger extremal dimensions of Fig. 4 undoubtedly 
are associated with the second zone surface for indium. 
Comparison with the cross sections of Fig. 9 shows the 

(a) 

FIG. 9. Cross sec
tions of the second 
and third zones for 
indium according to 
the free-electron 
model. 

7 N. E. Alekseevskii and Yu. P. Gaidukov, J. Exptl. Theoret. 
Phys. (U.S.S.R.) 37, 672 (1959). 
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TABLE I. Comparison of extremal dimensions of Fermi 
surface for indium with free-electron model. 

(b) 

Dimension Theoretical Experimental 
Zone designation dimension* dimension 

Mean 
Expt'lb 

a 

b 

c 

d 
f 
g 

1.04 

1.24 

1.13 

0.69 
0.42 
0.39 

1.03(1) 
1.03(3) 
1.21(1) 
1.17(2) 
1.03(2) 
1.03(3) 
1.03(4) 
0.95(3) 
0.35(2) 
0.25(3) 

1.03 

1.19 

1.03 

0.95 
0.35 
0.25 

a All in units of 108 cm-1. 
b Crystals with g|| [010], [001], [110], and (111) designated as 1, 2, 3, 

and 4, respectively. 

existence of a surprising degree of correspondence 
between the two. As would be expected, the cusps of 
the free-electron model are not reproduced, but there 
seems to be little doubt as to the essential correctness 
of the topology of the free-electron model for indium. 
Along axes of high symmetry, there is no question that 
the extremal dimensions measured do, in fact, corre
spond to the actual dimensions of the Fermi surface in 
these directions. Table I shows a comparison between 
the theoretical values and those obtained from experi
ment. For the dimensions a, 6, the agreement is within 
experimental error. The dimension c, however, is smaller 
than that obtained from theory, again suggesting a 
rounding of the cusps associated with the free-electron 
model. Both Figs. 4(c) and 4(d) suggest that the 
dimpled hexagonal faces are pulled out towards (111) 
directions and that, in fact, they are almost spherical 
about the immediate vicinity of these directions. The 
angular extensions of the "square" faces perpendicular 
and parallel to [001] are about 23° and 15°, respec
tively, compared to the theoretical values of 30° and 
25°. As before, this disagreement is easily explained in 
terms of the absence of the cusp-like geometry inherent 
in the free-electron model. No evidence has been ob
tained for the existence of oscillations associated with 
orbits around the necks of the second zone surface. 

It is believed that the smaller extremal dimensions of 
Fig. 4 are associated with the third zone surface for 
indium. Reference to Table I shows that the agreement 
with the free-electron model is also quite good. As may 
be seen from Fig. 4(b), the extremum increases from 
[110] to [010]. However, the change is small, which 
would be expected if the arms were tapered rather than 

{^X> 

FIG. 11. Cross sections of the second and third zone surfaces 
for lead according to the free-electron model. 

cylindrical. This viewpoint finds additional support 
from the curve Fig. 4(c); for an arm of cylindrical cross 
section, the extremal dimension would increase con
tinuously as H is rotated away from [110]. In summary, 
then, it would seem that the free-electron model does 
provide a quite accurate model for the Fermi surface 
of indium. 

B. Lead 

Figure 10 shows the free-electron Fermi surface for 
lead.8 The first zone is full while the second zone 
surface is a dimpled fourteen-sided polyhedron, the 
faces of which are smaller than those for a trivalent 
fee metal. Correspondingly, the third zone arms are 
much thicker than in the latter case. Small pockets of 
electrons also are predicted to exist in the fourth zone, 
but recent de Haas-van Alphen data9 have failed to con
firm their existence. Thus, we can presumably confine 
our attention to orbits in the second and third zones. 
The relevant cross sections of the Fermi surface are 
shown in Fig. 11. Owing to the thicker arms existing in 
the third zone, the associated oscillatory effects are quite 
pronounced. Figure 12 shows the possible orbits on a 

FIG. 12. Schematic representation of the possible third 
zone orbits in lead. 

FIG. 10. Free-electron Fermi surface for lead. 
J Walter A. Harrison, Phys. Rev. 118, 1182 (1961). 
1 A. V. Gold and J. R. Anderson (private communication). 
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FIG. 13. Tentative assignment of the observed extrema to the 
possible orbits in lead. Note added in proof. For q||C110], H ^ [1 1 0 ] 
the smaller extremum corresponds to the orbit I not | . 

schematic representation of the third zone. As noted 
previously, there are many field orientations for which 
orbits are simultaneously present on the second and 
third zone surfaces. It is believed that the interference 
effects between such orbits is responsible for the rela
tively few oscillations observed for many field 
orientations. 

Reference to Fig. 7 shows that, in general, two 
distinct momenta are observed for any direction of the 
magnetic field. On the basis of the free-electron model, 
it is possible to make an identification of the associated 
orbits; a tentative scheme is given in Fig. 13. The most 
certain assignment concerns the oscillations associated 
with the orbit 0. These occur for q||[110], H ^ [ l l l ] , 
a typical curve for H at 45° to [001] being shown in 
Fig. 6. There is fair agreement between the angular 
range over which these oscillations can be observed 
and that predicted from the free-electron model, modi
fied so as to round off the cusps of the resulting surface. 
As may be seen from Table II, the extremal dimension 
agrees quite closely with the calculated value. It would 
thus seem natural to assign the larger extremal di
mensions for q||[110], H—[111] to the orbits a, which 
involve the outer parts of the hexagonal surfaces of the 
third zone. From Table II, it is seen that this assignment 
again gives an extremal dimension in fairly good agree
ment with experiment. 

For q||[100], H—[001] orbits involving both the 
second and third zones are possible. The former involve 
relatively limited extremal regions, since they transverse 
the cusp-like ridges of the second zone. It would there
fore seem to be more reasonable that the oscillatory 
behavior with H near [001] is due to the orbit rj. For 
H near [011], however, it seems fairly certain that a 
second zone orbit predominates. This orbit encompasses 
both the square and hexagonal faces of the second 
zone; it thus would be expected to possess a large area 
giving extrema. For the same reason it would appear 
that the oscillatory behavior for q||[110], H—[110] is 
also due to the orbits a. Reference to Table II shows 
that these assignments give dimensions agreeing quite 
closely with each other and with the value predicted 
from the free-electron model. Using this same argument, 
it seems reasonable to assign the oscillations for 
qj|[110], H—[001] to the third zone orbits -q. The third 
zone orbits £, f are undoubtedly responsible for the 
long-period oscillations observed. 

TABLE II. Comparison of extremal dimensions of Fermi 
surface for lead with theoretical values. 

Zone 

2a 
2a 
3£ 
3£ 
37, 
3*7 
3f 

30 
3*7 

Dimension 
designation 

a 
b 

Diagonal 
c 

Semidiagonal 
e+§c 

d 

if 
k 

a All in units of 108 cm" 

Theoretical* 
dimension 

Free 
electron 

0.98 
0.87 
0.67 
0.44 
0.93 
0.93 
0.59 

0.55 
1.12 

i 

OPW 

0.95 
0.85 
0.67 
0.52 
0.86 
0.84 
0.42 

0.56 
0.99 

Experimental 
dimension5 

0.92(2) 
0.92(1) 
0.40(1) 
0.52(2) 
1.03(1) 
0.83(2) 
0.50(1) 
0.45(2) 
0.58(2) 
1.28(2) 

Mean8 

expt'l. 

0.92 
0.92 
0.40 
0.52 
1.03 
0.83 
0.48 

0.58 
1.28 

b Crystals with <z|| [100] and [110] designated as 1 and 2, respectively. 

FIG. 14. Section of the third zone surface for lead according to 
the free-electron model and the OPW interpolation scheme of 
Anderson.4 The projection is along [110] and the dimensions are 
in units of 2ir/a. 

From Table II it may be seen that, in general, the 
extermal dimensions agree quite well with those ob
tained from the free-electron model. This result is 
consistent with the recent work of Gold and Anderson,9 

who find that the high-field de Haas-van Alphen data 
on lead are also in reasonable agreement with the free-
electron model if the fourth zone pockets are removed. 
It has been shown by Anderson, however, that an even 
better fit with experiment can be obtained using an 
OPW interpolation procedure. This scheme modifies the 
cross sections of the free-electron Fermi surface mainly 
by rounding off the cusps inherent in the latter, as may 
be seen in Fig. 14. In Table II a comparison is also given 
with the extremal dimensions given by this model; the 
agreement is clearly very good and, in fact, appears to be 
within the limits of error of the magnetoacoustic data. 
It must be concluded that the OPW model is extremely 
satisfactory at least insofar as the present data are 
concerned. 
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V. CONCLUSIONS 

High-frequency magnetoacoustic data have been 
obtained for both indium and lead using an automatic 
recording technique. For both metals reasonable agree
ment is obtained between the extremal dimensions of 
the Fermi surface and those obtained from the free-
electron model. The OPW model of Anderson gives an 
even better fit to the data for lead. 
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The analog to the Bloch equation for the case of thermal conduction in a superconductor limited by 
phonon scattering is derived by introducing an appropriate general form for the nonequilibrium part of the 
distribution function into the corresponding Boltzmann equation. This integral equation for the deviation 
function is solved numerically for different temperatures T by replacing it by sets of simultaneous linear 
equations with dimensions up to 39. The limiting curve for the deviation function when T approaches the 
transition temperature Tc from below turns out to be identical to the curve wrhich has been reported by 
Klemens for the normal state. With T decreasing below Tc the maximum of the deviation function rises 
and shifts to higher energies. The ratio of the thermal conductivity in the superconducting state to that in 
the normal state, K,/KM, plotted against T/Te is found to increase monotonically and to have a limiting slope 
of about 1.62 at JTC. Consideration of the energy dependence of the energy gap in the case of lead yields a 
sizable effect on the plot of KJK„ VS T/TC. 

I. INTRODUCTION 

AN outstanding feature of the experimental results 
for the electronic thermal conductivity of super

conductors is the qualitatively different behavior of 
the conductivity according to whether the dominant 
scatterers are impurities or phonons. The ratio of the 
thermal conductivity in the superconducting state to 
that in the normal state, KS/K», plotted against the 
reduced temperature, T/Tc, is found to have a zero 
slope at the transition temperature Tc if the scattering 
is predominantly by the impurities, but it is found to 
have a finite limiting slope, of about 1.6 for tin and of 
about 5 for lead and mercury, if the scattering is 
predominantly by phonons. 

Bardeen, Rickayzen, and the author1 have derived 
an expression for K8/KU on the basis of the Bardeen-
Cooper-Schrieffer microscopic theory of superconduc
tivity,2 valid when the impurity scattering limits the 
heat flux. They find excellent agreement between their 
theoretical curve and the various experimental data; 
in particular, this theory yields a zero slope of KS/KU at 
Tc. So far, the electronic thermal conductivity limited 

*This work was supported in part by the National Science 
Foundation. 

1 J. Bardeen, G. Rickayzen, and L. Tewordt, Phys. Rev. 113, 
982 (1959), hereafter referred to as BRT. 

2 J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Phys. Rev. 
108, 1175 (1957), hereafter referred to as BCS. 

by the phonons has not been understood as well. This 
problem has been treated first in BRT by setting up 
the full Boltzmann equation for the deviation in the 
distribution function of the quasi-particles from the 
equilibrium distribution. This Boltzmann equation 
takes into account the occurrence of the energy gap in 
a superconductor, the modified group velocity of the 
quasi-particle excitations, and the coherence factors in 
the matrix elements for the particle-phonon interaction. 
Lower bounds on the thermal conductivity were ob
tained by making use of Kohler's variational principle. 
One of the trial solutions which were used for the 
deviation function gave a negative slope of K5/K„ versus 
T/Tc at Tc. 

Kadanoff and Martin3 derived an approximate 
expression for KJKU by using thermodynamic Green's 
functions and introducing a finite lifetime for the 
excitations as a parameter into the theory. Their basic 
approximation consists in the replacement of the 
transport cross section by the scattering cross section. 
In evaluating their expression for K8/icn they further 
assumed that the lifetimes of a quasi-particle and a 
normal state excitation are the same and do not depend 
on the excitation energy. Under these assumptions the 
two (unknown) lifetimes drop out from the expression 
for Ks/Kn, and the temperature dependence of this ratio 

3 L. P. Kadanoff and P. Martin, Phys. Rev. 124, 670 (1961). 


